Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents.

نویسندگان

  • J L Vildé
  • E Dournon
  • P Rajagopalan
چکیده

The activity of serial concentrations of different antimicrobial agents on the multiplication of Legionella pneumophila within human monocyte-derived macrophages was studied. The results led to the definition of a minimal extracellular concentration inhibiting intracellular multiplication (MIEC). According to the MIECs, the antimicrobial agents tested were classified in three groups: very active (MIEC less than or equal to 0.06 microgram/ml), such as erythromycin, rifampin, and pefloxacin; active (1 microgram/ml greater than or equal to MIEC greater than or equal to 0.1 microgram/ml), such as sulfamethoxazole-trimethoprim or doxycycline; and ineffective, such as cefoxitin, which was not active within macrophages at as high as 64 micrograms/ml despite a low MIC (0.2 microgram/ml) on bacterial charcoal-yeast extract agar. The activity of netilmicin was difficult to assess because of its effect on extracellular legionellae. Combinations of erythromycin with rifampin and pefloxacin with erythromycin, rifampin, doxycycline, or netilmicin showed an additive effect and no antagonism. These results obtained in a cellular model are in agreement with the efficacy of antimicrobial agents in experimental infections and in Legionnaires disease. They sustain clinical interest in the new quinolones, such as pefloxacin, and in combinations of antimicrobial agents for the treatment of Legionnaires disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth n...

متن کامل

Direct activation of human monocyte-derived macrophages by a bacterial glycoprotein extract inhibits the intracellular multiplication of virulent Legionella pneumophila serogroup 1.

Intracellular multiplication of virulent Legionella pneumophila serogroup 1 was inhibited by human monocyte-derived macrophages activated by a glycoprotein extract of Klebsiella pneumoniae, RU 41.740. Macrophage cultures were infected with L. pneumophila in the presence of immune antibodies on day 7 of culture. Extracellular bacteria were removed an hour after infection, and various concentrati...

متن کامل

Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

BACKGROUND Legionella pneumophila is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3), an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we...

متن کامل

2-Deoxy-D-glucose inhibits intracellular multiplication and promotes intracellular killing of Legionella pneumophila in A/J mouse macrophages.

Legionella pneumophila can grow intracellularly in A/J mouse macrophages. 2-Deoxy-D-glucose (2dG) (0.1, 1, and 10 mM) inhibited intracellular multiplication and promoted intracellular killing of L. pneumophila dose dependently when it was added to the culture medium of macrophage monolayers, whereas it did not inhibit the bacterial growth in buffered yeast extract broth, which was used for an L...

متن کامل

KKL-35 Exhibits Potent Antibiotic Activity against Legionella Species Independently of trans-Translation Inhibition

trans-Translation is a ribosome-rescue system that is ubiquitous in bacteria. Small molecules defining a new family of oxadiazole compounds that inhibit trans-translation have been found to have broad-spectrum antibiotic activity. We sought to determine the activity of KKL-35, a potent member of the oxadiazole family, against the human pathogen Legionella pneumophila and other related species t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 1986